
 

  
Abstract—The Real Time Embedded Systems (RTES) project 

was created to study the design and implementation of high-
performance, heterogeneous, and fault-adaptive real time 
embedded systems. The driving application for this research was 
the proposed BTeV high energy physics experiment, which 
called for large farms of embedded computational elements 
(DSPs), as well as a large farm of conventional high-
performance processors to implement its Level 1 and Level 2/3 
triggers. At the time of BTeV's termination early in 2005, the 
RTES project was within days of completing a prototype 
implementation for providing a reliable and fault-adaptive 
infrastructure to the L2/3 farm; a prototype for the L1 farm had 
been completed in 2003. This paper documents the conclusion of 
the RTES focus on BTeV, and provides an evaluation of the 
applicability of the RTES concepts to other systems. 
 

Index Terms—Computer reliability, large-scale systems, real 
time systems, reliability modeling 

I. INTRODUCTION 

HE Real Time Embedded Systems (RTES) project [1] was 
born from a need address the concerns voiced by a project 

review conducted in 2000, for the proposed BTeV high energy 
physics experiment [2], which (at the time) called for 
approximately 2500 embedded processors in its Level 1 trigger, 
and a comparable number of commodity computers in its Level 
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2/3 trigger: 
"Given the very complex nature of this system 

where thousands of events are simultaneously and 
asynchronously cooking, issues of data integrity, 
robustness, and monitoring are critically important 
and have the capacity to cripple a design if not dealt 
with at the outset… BTeV [needs to] supply the 
necessary level of “self-awareness” in the trigger 
system." 

The RTES group was formed as a collaborative effort 
between electrical engineers, computer scientists, and high 
energy physicists, to research the design and implementation 
of high-performance, heterogeneous, fault-tolerant and fault-
adaptive real-time systems, for which the L1 and L2/3 trigger 
computational resources of BTeV would serve as a archetype. 

 

II. RTES ASPECTS 

The RTES project approached this problem by considering 
both design-time modeling and run-time capabilities. Figure 1 
shows the overall project perspective. 

 
Fig. 1. Design Time and Runtime aspects of RTES. Multiple domain-
specific languages are used at the Design and Analysis level, to represent 
system organization and behavior. Synthesis produces runtime artifacts 
(codes, scripts). Runtime middleware (VLAs, ARMORs) provides 
detection and mitigation of faults.  

 
Each of these aspects are described in the following 

subsections.  
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A. Modeling 

A graphical modeling tool called the Generic Modeling 
Environment (GME [3]) was used to apply model integrated 
computing methods to the specification and analysis of the 
system. GME supports domain-specific languages for 
representing differing dimensions of the system organization 
and behavior, as well as the meta-modeling capabilities for 
defining new domain-specific languages 

B. Adaptive Reconfigurable Mobile Objects for Reliability 

Adaptive Reconfigurable Mobile Objects for Reliability 
(ARMORs [4]) are multithreaded processes internally 
structured around objects ("elements") which provide 
functions or services. Every ARMOR process contains a basic 
set of elements that provide core functionality, e.g., reliable 
point-to-point inter-ARMOR messaging, and ARMOR-state 
checkpointing. A modular, event-driven architecture permits 
developers to customize an ARMOR process's functionality 
and fault-tolerance services (detection and recovery) 
according to the application's needs. The self-checking 
ARMOR runtime environment includes: one fault-tolerance 
manager (FTM) to initialize the ARMOR-based system 
configuration, to maintain registration information on all 
ARMORs and applications, and to initiate recovery from 
ARMOR and node failures; one heartbeat ARMOR (HB) to 
detect failures in the FTM; one daemon ARMOR per node, 
acting as a gateway for ARMOR-to-ARMOR communication; 
and any number of execution ARMORs, which launch and 
monitor application processes.  

C. Very Light Weight Agents 

Very lightweight agents (VLAs [5]) are responsible for 
providing a lightweight, adaptive layer of fault detection and 
mitigation. Agents consist of a relatively few lines of code 
embedded within applications, or acting as independent 
processes, which monitor hardware and software integrity. 
VLAs can be proactive or reactive, depending on their scope.  

D. Load Balancing and Network Simulation 

In addition to descriptive system modeling using GME, the 
RTES project also studied adaptive dynamic load-balancing 
[6], and thermal management, in an effort to understand the 
nature of the processing farms, and how best they could be 
utilized, both to perform their mission-critical processing, as 
well as to support lower priority (offline) computing on an as-
available basis. 

 

III. SUPERCOMPUTING 2003 

As a first exercise in demonstrating their methodologies, the 
RTES group developed a prototype for the BTeV Ll trigger 
processing farm, using digital signal processors (DSPs) of the 
type being studied by BTeV at that time. This prototype was 
demonstrated at the Super Computing 2003 conference [7]. It 
modeled 3 farmlets of 3 DSPs each, monitored by a PC running 

Linux; an additional Windows-based PC served as a 
communications processor. Additional DSPs played the roles 
of farmlet buffer managers, and the event generator. GME was 
used to define the execution behavior of the DSPs, as well as 
to define the communications channels between DSPs and the 
Windows PC. VLAs were developed for fault detection on the 
DSPs; ARMORs were not sufficiently "lightweight" for 
incorporation in the DSP runtime environment. (BTeV later 
determined that a smaller number of conventional processors, 
such as the PowerPC, could serve the needs of the L1 trigger 
as an alternative to DSPs; ARMORs were to have been 
revisited for incorporation in the next generation L1 farm.) 
ARMORs were developed for both the Windows and Linux 
PCs, to provide oversight of the communications and the user 
control task. Overall control/display was provided by the 
Experimental Physics and Industrial Control System (EPICS [8]) 
software. A block diagram of this system is show in Figure 2. 

 
Fig. 2. SC2003 Demonstration System. 16 DSPs were monitored and 
controlled by a Linux PC, using a Windows PC as a communication 
channel. VLAs were implemented for the DSPs; ARMORs were 
developed to support the PCs. VLAs reported to ARMORs.  

 
A formal review of the project software was conducted after 

the conference. In response to this review, it was recognized 
that GME would need to serve a large number of domains and 
submodels: system description, message modeling, fault 
mitigation behavior, run control behavior, user interface 
definition, etc. For the ARMOR software, it was recognized 
that custom (application-specific) ARMOR elements needed to 
be easy to create, and that package organization and version 
control were vital. This review strongly influenced Demo 
System 2004. 

 

IV. DEMO SYSTEM 2004 

As a next effort, the RTES project undertook to prototype 
the L2/3 trigger commodity processor farm. Hardware for this 
farm was accumulated by BTeV, recycled from other computing 
farms at Fermilab. The farm was heterogeneous (dual-CPU P3's 
and P4's; at least 4 different speeds), and several exhibited 
hardware problems. It was an excellent setting for 
demonstrating reliable software infrastructures. 

In accordance with the earlier project review, the use of GME 
was dramatically expanded in this effort, to provide five 
different domain-specific graphical languages. The System 



 

Integration Modeling Language (SIML) provided a high level 
specification of the system; artifacts generated from this model 
(scripts and configuration files) were used to build, deploy, 
and configure the runtime system. The Data Types Modeling 
Language (DTML) defined the message data types, and 
abstracted the details of the underlying communications 
protocols; artifacts generated from these models (code) 
provided marshalling and demarshalling middleware. The Run 
Control Modeling Language (RCML) described the behavior of 
the underlying trigger application control framework; the 
artifacts generated from these models (Python scripts) 
provided global, regional, and local run control state machines. 
The GUI Configuration Modeling Language (GCML) defined 
the layout of the user interface; the artifacts generated from 
this model (Matlab .M files) were used to create the monitoring 
and control for the demonstration. Matlab was chosen to 
succeed EPICs for Demo System 2004, with the thought that a 
commercial-based solution would be easier to develop and 
maintain. It was also another opportunity to demonstrate the 
adaptability of GME. 

The fifth language addressed a cross-concern, between 
GME modeling and the ARMOR fault mitigation middleware. 
The Fault Mitigation Modeling Language allowed finite state 
machine graphs to characterized custom ARMOR behavior. 
The artifacts generated from these models were custom 
ARMOR elements.  

Packaging, organization, and versioning concerns were 
addressed, and resulted in an aggressive use of CVS, and the 
development of a fully automated build system. Code changes 
or GME drawing changes, by any of the collaborating team 
members, could quickly be committed to the shared CVS 
repository, then checked out and compiled by another. Since 
GME defined metamodels for the graphical languages, it was 
commonplace for a metamodel to "compile" into an interpreter, 
which in turn processed a domain model, to produce C++ 
source code, which was then compiled into the run tree. 

A block diagram of the system is shown in Figure 3.  

 
Fig. 3. Demo System 2004. Worker nodes running the L2/3 filter 
application, with Run Control (RC), VLAs and ARMOR middleware, are 
overseen by regional manager nodes (also ARMORed), which are 
overseen by an ARMORed global node. The user interface is GME-define 

Matlab code. Elvin publish-subscribe messaging is used for non-ARMOR 
communications.  

 
Several different test configurations were developed using 

the SIML system language, employing variously 3, 12, and 54 
worker nodes (performing L2/3 processing), with additional 
regional and global control nodes. As each node was a dual-
CPU machine, these configurations allowed the testing of 
ARMORs, VLAs, and GME-derived communications and 
control to be applied to over 120 processors. The "16 node" 
(12 workers) and "65 node" (54 workers) systems were 
demonstrated at the Real Time and Embedded Technology and 
Applications Symposium, March 2005 [9].  

Developing and supporting both "16 node" and "65 node" 
configurations had several beneficial effects. Effective 
software engineering was vital to minimize the number of 
instances where the "same change" needed to be applied. And 
rapid remapping between configurations exposed scale-
dependent behaviors and system bugs that might not 
otherwise have been detected only by the testing of one 
configuration.  

 

V. BEYOND BTEV 

Beyond the BTeV project, the RTES project is examining 
several alternative experiments and projects to which the 
solutions developed for and lesson learned from the 
SuperComputing 2003 and Demo System 2004 prototypes may 
be applied. 

A. CMS 

Model integrated computing and domain-specific modeling 
languages, with automated code generation, are applicable to 
any large scale system, to mitigate complexity associated with 
design management and component integration.  

A study is in progress in the use of GME-based models for 
system description, finite state machine representation, and 
message definition, each with its own automated artifact 
generation, for potential application to the XDAQ subsystem 
of the CMS project at CERN. Each domain-specific graphical 
language has an associated interpreter, which produces scripts 
(e.g. Python), code fragments (e.g. C++), configuration files, 
etc., as appropriate for the problem domain.  

The HLT (high level trigger) framework is also being 
explored, as a candidate for adding fault tolerance modules. 
Several VLA design principles are being investigated for 
providing adaptive capabilities under dynamic error 
conditions, including game theoretical solutions assuming 
rational agents [10]. 

As CMS is a well developed project with critical deadlines, 
the RTES study is seeking to demonstrate solutions to 
outstanding needs, without requiring changes or resources 
from CMS. Unlike BTeV, where model integrated computing 
had an opportunity to define the methodologies employed in 



 

system design, RTES must now demonstrate agility and 
economy in addressing existing issues in CMS. However, this 
demonstration should prove general applicability of these 
RTES concepts. 

B. LQCD 

Many computational systems with fault sensitivities can 
benefit from automated detection and fast fault recovery. 

The ARMOR middleware is being ported to the Lattice 
Gauge Theory Computational Facility at Fermilab, in support of 
Lattice Quantum Chromo Dynamics (LQCD) calculation. This 
processing is highly sensitive to faults, as the failure of a 
single process in an active cluster can compromise the 
processing of the entire cluster. Check-pointing and real time 
process recovery/migration are being studied, to mitigate the 
system-wide effects of single point failures. The LQCD codes 
are real applications, unlike the L2 model used in Demo System 
2004. Also, varying numbers of protected nodes will create an 
interesting testbed for ARMOR configuration and 
communication scaling. 

The LQCD applications further differ from the L1 and L2/3 
farm applications of BTeV, in that they are batch processing 
(rather than operator overseen), and the scope of processes to 
be supervised is considerably more dynamic than the quasi-
static L1 and L2/3 trigger applications. Fully self-sufficient 
solutions, with clean consumer (API) interfaces, are required. 

C. Grid-based applications 

Load balancing and networks studies of the BTeV L2/3 farm 
will be generalized, to consider inter-farm scheduling and 
communications, in support of Grid-based processing. The 
farms provide not only computational power for the 
reconstruction tasks, but also off-line and analysis jobs. This 
expansion will ensure that the scheduling of the farm resources 
will be done in a more resource-efficient manner, taking into 
account the resource needs of the jobs (e.g. number of 
processors or processor-hours required), deadlines (e.g. "need 
result by Monday noon"), as well as load, temperature, and 
energy constraints. 

D. Other 

Another testbed being examined for ARMORs and VLAs is 
the Dark Energy Survey (DES), and their adoption of the 
MONSOON data acquisition system with a digital camera to be 
used on the Blanco 4m telescope at the Cerro Tololo 
Interamerican Observatory. The site is remote (a hilltop in 
Chile), so inference and adaptation must replace observation 
and intervention. 

This is not a critical, real time hard system, as it may be 
possible to repeat an image acquisition if a fault is quickly 
detected and remitted. Also, the system is computationally 
modest, requiring only a few processors. But the application 
software for this project is well developed and documented, 
and will clearly demonstrate the "cost" of incorporating 
ARMOR and VLA methodologies. 

 

VI. CONCLUSION 

The RTES project was created to address the fault adaptive 
needs of the BTeV high energy physics project. However, the 
design-time modeling and runtime middleware developed by 
this project are applicable to many large, high performance, 
heterogeneous, real-time embedded application environments. 
Several differing environments are currently being explored. 
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